Please wait...
stdClass Object
(
    [nazev] => Monolith - research group
    [adresa_url] => 
    [api_hash] => 
    [seo_desc] => 
    [jazyk] => 
    [jednojazycny] => 1
    [barva] => 
    [indexace] => 1
    [obrazek] => 
    [ga_force] => 
    [cookie_force] => 
    [secureredirect] => 1
    [google_verification] => UOa3DCAUaJJ2C3MuUhI9eR1T9ZNzenZfHPQN4wupOE8
    [ga_account] => UA-10822215-5
    [ga_domain] => 
    [ga4_account] => 
    [gtm_id] => 
    [gt_code] => 
    [kontrola_pred] => 
    [omezeni] => 
    [pozadi1] => 
    [pozadi2] => 
    [pozadi3] => 
    [pozadi4] => 
    [pozadi5] => 
    [robots] => 
    [htmlheaders] => 
    [newurl_domain] => 'monolith.vscht.cz'
    [newurl_jazyk] => 'en'
    [newurl_akce] => '[en]'
    [newurl_iduzel] => 
    [newurl_path] => 8549/61003/61004
    [newurl_path_link] => Odkaz na newurlCMS
    [iduzel] => 61004
    [platne_od] => 27.11.2023 22:43:00
    [zmeneno_cas] => 27.11.2023 22:43:01.180055
    [zmeneno_uzivatel_jmeno] => Jan Kříž
    [canonical_url] => 
    [idvazba] => 72319
    [cms_time] => 1714809550
    [skupina_www] => Array
        (
        )

    [slovnik] => stdClass Object
        (
            [logo_mobile_href] => /
            [intranet_text] => Intranet
            [zobraz_desktop_verzi] =>  
            [preloader] => Please wait...
            [logo_href] => /
            [logo_mobile] => home
            [google_search] =>  
            [social_in_odkaz] =>  
            [social_fb_odkaz] =>  
            [social_tw_odkaz] =>  
            [social_yt_odkaz] =>  
            [intranet_odkaz] => https://intranet.vscht.cz/
            [mobile_over_nadpis_menu] => Menu
            [mobile_over_nadpis_search] => Search
            [mobile_over_nadpis_jazyky] => Languages
            [mobile_over_nadpis_login] => Login
            [menu_home] => Homepage
            [aktualizovano] => Updated
            [autor] => Author
            [paticka_mapa_odkaz] => https://www.vscht.cz/name-and-address
            [paticka_budova_a_nadpis] => BUILDING A
            [paticka_budova_a_popis] => Rector, 
Department of Communications, 
Department of Education, 
FCT Dean’s Office, 
Centre for Information Services
            [paticka_budova_b_nadpis] => BUILDING B
            [paticka_budova_b_popis] => Department of R&D, Dean’s Offices:
FET, 
FFBT, 
FCE, 
Computer Centre, 
Department of International Relations, 
Bursar
            [paticka_budova_c_nadpis] => BUILDING C
            [paticka_budova_c_popis] => Crèche Zkumavka, 
General Practitioner, 
Department of Economics and Management, 
Department of Mathematics
            [paticka_budova_1_nadpis] => NATIONAL LIBRARY OF TECHNOLOGY
            [paticka_budova_1_popis] =>  
            [paticka_budova_2_nadpis] => CAFÉ CARBON
            [paticka_budova_2_popis] =>  
            [paticka_adresa] =>  UCT Prague
Technická 5
166 28 Prague 6 – Dejvice
IČO: 60461373 / VAT: CZ60461373

Czech Post certified digital mail code: sp4j9ch

Copyright: UCT Prague
Information provided by the Department of International Relations and the Department of R&D. Technical support by the Computing Centre. [paticka_odkaz_mail] => mailto:info@vscht.cz [drobecky] => [logo] => home [social_li_odkaz] => [more_info] => [zobraz_mobilni_verzi] => [nepodporovany_prohlizec] => ) [poduzel] => stdClass Object ( [61005] => stdClass Object ( [obsah] => [poduzel] => stdClass Object ( [61006] => stdClass Object ( [obsah] => [iduzel] => 61006 [canonical_url] => _clone_ [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [61007] => stdClass Object ( [obsah] => [iduzel] => 61007 [canonical_url] => _clone_ [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [61009] => stdClass Object ( [obsah] => [iduzel] => 61009 [canonical_url] => _clone_ [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) ) [iduzel] => 61005 [canonical_url] => _clone_ [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [61012] => stdClass Object ( [obsah] => [poduzel] => stdClass Object ( [61168] => stdClass Object ( [nazev] => Equipment [seo_title] => Equipment [seo_desc] => [autor] => [autor_email] => [perex] => [ikona] => [obrazek] => 0001~~c8xLzKmsSi0q1jUCAA.jpg [ogobrazek] => [pozadi] => [obsah] =>
  • Computer-controlled modular mini reactor for evaluation of reaction kinetics and pressure drop in catalyst and filter samples. Capable to test powder, monolith slice, or cylindrical monolith core
  • Independent test rig for cold-flow pressure-drop testing
  • Soot filtration test rig
  • Bronkhorst mass flow controllers, on-line preparation of mixture from synthetic gases (CO, O2, H2, NO, NO2, NH3, CO2, H2O, N2, hydrocarbons from CH4 to C12H26, etc.)
  • High-speed FTIR analyzer MKS 2030HS (sampling period 0.2 s)
  • Mass spectrometer Hiden QGA with spatially resolved capillary inlet (SpaciMS)
  • Paramagnetic, UV and IR analyzers ABB Advance Optima
  • Motormill Eiger Torrance M100 VSE-TFV with YTZ beads for milling catalyst suspensions
  • Washcoating rig for catalytic coating of lab-scale monoliths, including filter samples
  • Programmable furnace Carbolite
  • Miniature inverted soot generator Argonaut Scientific MISG-2
  • Solid particle counting system Horiba MEXA-2000-SPCS
  • Characterization of catalytic filter samples (SEM, TEM, CO chemisorption, XRD, XPS, MIP) located at central labs and/or at the co-operating research groups at UCT Prague
  • X-ray microtomography available at cooperating labs (University of West Bohemia in Pilsen – static XRT, Paul Scherrer Institute and University of Manchester in Harwell – time-resolved XRT)
  • In-house developed modular software for dynamic simulations of catalytic monoliths, filters and pipes under transient conditions, 1D mathematical models with efficient numerical solvers in Fortran
  • In-house developed models and solvers for 3D reaction-transport simulations in OpenFOAM
  • Cluster of 64-core CPU computers with 1 TB RAM each
[urlnadstranka] => [iduzel] => 61168 [canonical_url] => [skupina_www] => Array ( ) [url] => /equipment [sablona] => stdClass Object ( [class] => stranka_obrazek_vertical [html] => [css] => [js] => [autonomni] => 1 ) ) [61013] => stdClass Object ( [nazev] => [seo_title] => Home [seo_desc] => [autor] => [autor_email] => [obsah] =>

Research group Monolith has a strong background in chemical reactor engineering and applied heterogeneous catalysis. The team effectively combines experiments and computer simulations to study reaction kinetics, transport and transformation processes in catalytic reactors, filters and fuel cells. This includes development of novel methods for mathematical modeling in micro- and nano-scale, involving 3D digital reconstruction of porous materials from electron microscopy and tomography images. Multi-scale models of reaction and transport allow prediction of the entire device performance depending on the microstructure, which provides valuable feedback for the development of advanced catalytic materials and reactor configurations. Selected research projects are performed in co-operation with industrial partners such as Johnson Matthey, Corning, Ecocat, Mercedes-Benz (Daimler) or Škoda Auto.

Key research areas:

  • Catalytic monolith reactors and filters
  • Fuel cells
  • Micro- and nano-structure of porous materials
  • Kinetics of catalytic reactions
  • Mass transport effects
  • Multi-scale mathematical modeling
  • Technologies for clean air, exhaust gas aftertreatment
[urlnadstranka] => [ogobrazek] => [pozadi] => [iduzel] => 61013 [canonical_url] => [skupina_www] => Array ( ) [url] => /home [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [61167] => stdClass Object ( [nazev] => Publications [seo_title] => Publications [seo_desc] => [autor] => [autor_email] => [perex] => [ikona] => dokument [obrazek] => [ogobrazek] => [pozadi] => [obsah] =>

Journal papers

  • Zheleznyak T., Kočí P., Epling W. Impact of mild hydrothermal aging on kinetics of NH3, NO, SO2 and CO oxidation reactions on Cu/SSZ-13 catalyst. Chemical Engineering Journal 489 (2024), 151194. DOI:10.1016/j.cej.2024.151194

  • Plachá M., Isoz M., Kočí P., Jones M.P., Svoboda M., Eastwood D.S., York A.P.E. Particle accumulation model in 3D reconstructed wall of a catalytic filter validated with time-resolved X-ray tomography. Fuel 356 (2024), 129603. DOI:10.1016/j.fuel.2023.129603

  • Hlavatý T., Kočí P., Isoz M., Deka D., Partridge W.P. Balanced Fast-SpaciMS capillary configurations provide practically noninvasive channel-average measurements in catalytic monoliths. Chemical Engineering Science 282 (2023), 119272. DOI:10.1016/j.ces.2023.119272

  • Němec J., Plachá M., Kočí P. Effective modeling of coupled reaction and transport inside the catalytic filter wall. Chemical Engineering Journal 461 (2023), 141847. DOI:10.1016/j.cej.2023.141847

  • Pečinka R., Blažek M., Knopp R., Kočí P., York A. Impact of diffusion limitations inside the wall of catalytic filters on conversion of gaseous pollutants at increased flow rates. Chemical Engineering Science 260 (2022), 117876. DOI:10.1016/j.ces.2022.117876

  • Isoz M., Kotouč Šourek M., Studeník O., Kočí P. Hybrid fictitious domain-immersed boundary solver coupled with discrete element method for simulations of flows laden with arbitrarily-shaped particles. Computers and Fluids 244 (2022), 105538. DOI:10.1016/j.compfluid.2022.105538

  • Novák V., Blažek M., Schlepütz C.M., Kočí P., Stampanoni M. Drying of water from porous structures investigated by time-resolved X-ray tomography. Drying Technology (2022), 1-19. DOI:10.1080/07373937.2022.2076239

  • Leskovjan M., Němec J., Plachá M., Kočí P., Isoz M., Svoboda M., Novák V., Price E., Thompsett D. Multiscale modeling and analysis of pressure drop contributions in catalytic filters. Industrial & Engineering Chemistry Research 60 (2021), 6512-6524. DOI:10.1021/acs.iecr.0c05362

  • Blažek M., Žalud M., Kočí P., York A., Schlepütz C.M., Stampanoni M., Novák V. Washcoating of catalytic particulate filters studied by time-resolved X-ray tomography. Chemical Engineering Journal 409 (2021), 128057. DOI:10.1016/j.cej.2020.128057

  • Kvasničková A., Kočí P., Ji Y., Crocker M. Effective Model of NOx Adsorption and Desorption on PtPd/CeO2-ZrO2 Passive NOx Adsorber. Catalysis Letters 150 (2020), 3223-3233. DOI:10.1007/s10562-020-03186-z

  • Plachá M., Kočí P., Isoz M., Svoboda M., Price E., Thompsett D., Kallis K., Tsolakis A. Pore-scale filtration model for coated catalytic filters in automotive exhaust gas aftertreatment. Chemical Engineering Science 226 (2020), 115854. DOI:10.1016/j.ces.2020.115854

  • Březina J., Pečinka R., Boutikos P., Kočí P. Comparison of dual CO light-off effect on Pt/CeO2/γ-Al2O3, Pd/CeO2/γ-Al2O3, Pt/γ-Al2O3 and Pd/γ-Al2O3 in the presence of C3H6. Chemical Engineering Science 218 (2020), 115542. DOI:10.1016/j.ces.2020.115542

  • Buzková Arvajová A., Boutikos P., Pečinka R., Kočí P. Global kinetic model of NO oxidation on Pd/γ-Al2O3 catalyst including PdOx formation and reduction by CO and C3H6. Applied Catalysis B: Environmental 260 (2020), 118141. DOI:10.1016/j.apcatb.2019.118141

  • Boutikos P., Žák A., Kočí P. CO and hydrocarbon light-off inhibition by pre-adsorbed NOx on Pt/CeO2/Al2O3 and Pd/CeO2/Al2O3 diesel oxidation catalysts. Chemical Engineering Science 209 (2019), 115201. DOI:10.1016/j.ces.2019.115201

  • Březina J., Boutikos P., Buzková Arvajová A., Pečinka R., Kočí P. Dynamics of Two-Step CO Oxidation Light-Off on Pt/γ-Al2O3 and Pd/γ-Al2O3 in the Presence of C3H6. Topics in Catalysis 62 (2019), 252-258. DOI:10.1007/s11244-018-1129-5

  • Boutikos P., Březina J., Buzková Arvajová A., Kočí P. Comparison of O2 and NO2 impact on PtOx and PdOx formation in diesel oxidation catalysts and their reduction by CO and C3H6 pulses. Chemical Engineering Journal 377 (2019), 119654. DOI:10.1016/j.cej.2018.08.040

  • Buzková Arvajová A., Boutikos P., Kočí P. Differentiation between O2 and NO2 impact on PtOx formation in a diesel oxidation catalyst. Chemical Engineering Science 195 (2019), 179-184. DOI:10.1016/j.ces.2018.11.038

  • Kočí P., Isoz M., Plachá M., Arvajová A., Václavík M., Svoboda M., Price E., Novák V., Thompsett D. 3D reconstruction and pore-scale modeling of coated catalytic filters for automotive exhaust gas aftertreatment. Catalysis Today 320 (2019), 165-174. DOI:10.1016/j.cattod.2017.12.025

  • Leskovjan M., Kočí P., Maunula T. Simulation of diesel exhaust aftertreatment system DOC-pipe-SCR: The effects of Pt loading, PtOx formation and pipe configuration on the deNOx performance. Chemical Engineering Science 189 (2018), 179-190. DOI:10.1016/j.ces.2018.05.031

  • Buzková Arvajová A., Březina J., Pečinka R., Kočí P. Modeling of two-step CO oxidation light-off on Pt/γ-Al2O3 in the presence of C3H6 and NOx. Applied Catalysis B: Environmental 233 (2018), 167-174. DOI:10.1016/j.apcatb.2018.03.081

  • Václavík M., Plachá M., Kočí P., Svoboda M., Hotchkiss T., Novák V., Thompsett D. Structure characterisation of catalytic particulate filters for automotive exhaust gas aftertreatment. Materials Characterization 134 (2017), 311-318. DOI:10.1016/j.matchar.2017.11.011

  • Václavík M., Kočí P., Novák V., Thompsett D. NOx conversion and selectivity in multi-layer and sequential DOC-LNT automotive exhaust catalysts: Influence of internal transport. Chemical Engineering Journal 329 (2017), 128-134. DOI:10.1016/j.cej.2017.05.129

  • Distaso M., Zubiri B.A., Mohtasebi A., Inayat A., Dudák M., Kočí P., Butz B., Taylor R.K., Schwieger W., Spiecker E., Peukert W. Three-dimensional and quantitative reconstruction of non-accessible internal porosity in hematite nanoreactors using 360° electron tomography. Microporous and Mesoporous Materials 246 (2017), 207-214. DOI:10.1016/j.micromeso.2017.03.028

  • Arvajová A., Kočí P. Impact of PtOx formation in diesel oxidation catalyst on NO2 yield during driving cycles. Chemical Engineering Science 158 (2017), 181-187. DOI:10.1016/j.ces.2016.10.011

  • Choi J.-S., Kočí P. Automotive Emission Control Catalysts. Catalysts 6 (2016), 155-158. DOI:10.3390/catal6100155

  • Václavík M., Novák V., Březina J., Kočí P., Gregori G., Thompsett D. Effect of diffusion limitation on the performance of multi-layer oxidation and lean NOx trap catalysts. Catalysis Today 273 (2016), 112-120. DOI:10.1016/j.cattod.2016.03.013

  • Dudák M., Novák V., Kočí P., Marek M., Blanco-García P., Thompsett D. Impact of zeolite and γ-alumina intra-particle diffusion on the performance of a dual layer catalyst. Chemical Engineering Journal 301 (2016), 178-187. DOI:10.1016/j.cej.2016.04.085

  • Mráček D., Kočí P., Choi J.-S., Partridge W.P. New operation strategy for driving the selectivity of NOx reduction to N2, NH3 or N2O during lean/rich cycling of a lean NOx trap catalyst. Applied Catalysis B: Environmental 182 (2016), 109-114. DOI:10.1016/j.apcatb.2015.09.002

  • Arvajová A., Kočí P., Schmeißer V., Weibel M. The impact of CO and C3H6 pulses on PtOx reduction and NO oxidation in a diesel oxidation catalyst. Applied Catalysis B: Environmental 181 (2016), 644-650. DOI:10.1016/j.apcatb.2015.08.004

  • Novák V., Dudák M., Kočí P., Marek M. Understanding the gas transport in porous catalyst layers by using digital reconstruction techniques. Current Opinion in Chemical Engineering 9 (2015), 16-26.
    DOI:10.1016/j.coche.2015.07.002

  • Mráček D., Kočí P., Marek M., Pihl J.A., Choi J.-S., Partridge W.P. Dynamics of N2 and N2O Peaks During and After the Regeneration of Lean NOx Trap. Applied Catalysis B: Environmental 166-167 (2015), 509-517. DOI:10.1016/j.apcatb.2014.12.002

  • Bártová Š., Mráček D., Kočí P., Marek M., Choi J.-S. Ammonia reactions with the stored oxygen in a commercial lean NOx trap catalyst. Chemical Engineering Journal 278 (2015), 199-206. DOI:10.1016/j.cej.2014.09.115

  • Václavík M., Dudák M., Novák V., Medlín R., Štěpánek F., Marek M., Kočí P. Yeast cells as macropore bio-templates enhancing transport properties and conversions in coated catalyst layers for exhaust gas oxidation. Chemical Engineering Science 116 (2014), 342-349. DOI:10.1016/j.ces.2014.04.037

  • Novák V., Ortel E., Winter B., Butz B., Paul B., Kočí P., Marek M., Spiecker E., Kraehnert R. Prototyping of catalyst pore-systems by a combined synthetic, analytical and computational approach: Application to mesoporous TiO2. Chemical Engineering Journal 248 (2014), 49-62. DOI:10.1016/j.cej.2014.02.004

  • Dudák M., Novák V., Kočí P., Marek M., Blanco-García P., Jones G. Prediction of diffusivity and conversion of n-decane and CO in coated Pt/γ-Al2O3 catalyst depending on porous layer morphology. Applied Catalysis B: Environmental 150-151 (2014), 446-458. DOI:10.1016/j.apcatb.2013.12.018

  • Bártová Š., Mráček D., Kočí P., Marek M., Pihl J.A., Choi J.-S., Toops T.J., Partridge W.P. New insights on N2O formation pathways during lean/rich cycling of a commercial lean NOx trap catalyst. Catalysis Today 231 (2014), 145-154. DOI:10.1016/j.cattod.2013.11.050

  • Novák V., Kočí P., Gregor T., Choi J.-S., Štěpánek F., Marek M. Effect of cavities and cracks on diffusivity in coated catalyst layer. Catalysis Today 216 (2013), 142-149. DOI:10.1016/j.cattod.2013.07.002

  • Kočí P., Bártová Š., Mráček D., Marek M., Choi J.-S., Kim M.-Y., Pihl J.A., Partridge W.P. Effective Model for Prediction of N2O and NH3 Formation During the Regeneration of NOx Storage Catalyst. Topics in Catalysis 56 (2013), 118-124. DOI:10.1007/s11244-013-9939-y

  • Novák V., Kočí P., Marek M., Štěpánek F., Blanco-García P., Jones G. Multi-scale modelling and measurements of diffusion through porous catalytic coatings: An application to exhaust gas oxidation. Catalysis Today 188 (2012), 62-69. DOI:10.1016/j.cattod.2012.03.049

  • Štěpánek J., Kočí P., Marek M., Kubíček M. Catalyst simulations based on coupling of 3D CFD tool with effective 1D channel models. Catalysis Today 188 (2012), 87-93. DOI:10.1016/j.cattod.2012.01.038

  • Štěpánek J., Kočí P., Weaver M., Frey R., Overfeld A., Jakobs H. Modeling of Injected Diesel Fuel Conversion and Heat Release in Oxidation Catalyst: 3D-CFD & 1D Channels Approach. SAE Technical Paper 2012-01-1293. DOI:10.4271/2012-01-1293

  • Choi J.-S., Partridge W.P., Pihl J.A., Kim M.-Y., Kočí P., Daw C.S. Spatiotemporal distribution of NOx storage and impact on NH3 and N2O selectivities during lean/rich cycling of a Ba-based lean NOx trap catalyst. Catalysis Today 184 (2012), 20-26. DOI:10.1016/j.cattod.2011.11.007

  • Novák V., Kočí P., Štěpánek F., Marek M. Integrated multiscale methodology for virtual prototyping of porous catalyst. Industrial and Engineering Chemistry Research 50 (2011), 12904-12914. DOI:10.1021/ie2003347

  • Novák V., Kočí P., Štěpánek F., Kubíček M, Marek M. Simulated preparation of supported porous catalyst and evaluation of its reaction-transport properties. Computers and Chemical Engineering 35 (2011), 964-972. DOI:10.1016/j.compchemeng.2011.01.039

  • Plát F., Bártová Š., Štěpánek J., Kočí P., Marek M. Dynamics of a Combined DOC-NSRC-SCR Exhaust Gas Aftertreatment System with Periodic Regenerations. Industrial and Engineering Chemistry Research 49 (2010), 10348-10357. DOI:10.1021/ie100590s

  • Schejbal M., Štěpánek J., Kočí P., Marek M., Kubíček M. Sequence of monolithic converters DOC-CDPF-NSRC for lean exhaust gas detoxification: A simulation study. Chemical engineering and processing: Process intensification 49 (2010), 943-952. DOI:10.1016/j.cep.2010.05.005

  • Schejbal M., Štěpánek J., Marek M., Kočí P., Kubíček M. Modelling of soot oxidation by NO2 in various types of Diesel particulate filters. Fuel 89 (2010), 2365-2375. DOI:10.1016/j.fuel.2010.04.018

  • Chatterjee D., Kočí P., Schmeißer V., Marek M., Weibel M., Krutzsch B. Modelling of a combined NOx storage and NH3-SCR catalytic system for Diesel exhaust gas aftertreatment. Catalysis Today 151 (2010), 395-409. DOI:10.1016/j.cattod.2010.01.014

  • Novák V., Štěpánek F., Kočí P., Marek M. Evaluation of local pore sizes and transport properties in porous catalysts. Chemical Engineering Science 65 (2010), 2352-2360. DOI:10.1016/j.ces.2009.09.009

  • Štěpánek J., Kočí P., Plát F., Marek M., Kubíček M. Investigation of combined DOC and NSRC diesel car exhaust catalysts. Computers and Chemical Engineering 34 (2010), 744-752. DOI:10.1016/j.compchemeng.2010.01.003

  • Štěpánek J., Kočí P., Marek M., Maunula T., Kinnunen T. Effects of Biofuel Blends on Performance of Exhaust Gas Catalyst: Ethanol and Acetaldehyde Reactions. SAE Technical Paper 2010-01-0894, SAE International Journal of Fuels and Lubricants 3 (2010), 523-536. DOI:10.4271/2010-01-0894

  • Chatterjee D., Kočí P., Schmeißer V., Marek M., Weibel M. Modelling of NOx Storage + SCR Exhaust Gas Aftertreatment System with Internal Generation of Ammonia. SAE Technical Paper 2010-01-0887, SAE International Journal of Fuels and Lubricants 3 (2010), 500-522. DOI:10.4271/2010-01-0887

  • Kočí P., Novák V., Štěpánek F., Marek M., Kubíček M. Multi-scale modelling of reaction and transport in porous catalysts. Chemical Engineering Science 65 (2010), 412-419. DOI:10.1016/j.ces.2009.06.068

  • Schejbal M., Marek M., Kubíček M., Kočí P. Modelling of diesel filters for particulates removal. Chemical Engineering Journal 154 (2009), 219-230. DOI:10.1016/j.cej.2009.04.056

  • Kočí P., Plát F., Štěpánek J., Bártová Š., Marek M., Kubíček M., Schmeißer V., Chatterjee D., Weibel M. Global kinetic model for the regeneration of NOx storage catalyst with CO, H2 and C3H6 in the presence of CO2 and H2O. Catalysis Today 147S (2009), S257-S264. DOI:10.1016/j.cattod.2009.07.036

  • Kočí P., Štěpánek J., Plát F., Marek M., Kubíček M. Modelling of dynamic processes during the regeneration of NOx storage catalyst. Chemical Engineering Transactions 17 (2009), 105-110. DOI:10.3303/CET0917018

  • Kočí P., Plát F., Štěpánek J., Kubíček M., Marek M. Dynamics and selectivity of NOx reduction in NOx storage catalytic monolith. Catalysis Today 137 (2008), 253-260. DOI:10.1016/j.cattod.2007.11.023

  • Kočí P., Štěpánek F., Kubíček M., Marek M. Modelling of micro/nano-scale concentration and temperature gradients in porous supported catalysts. Chemical Engineering Science 62 (2007), 5380-5385. DOI:10.1016/j.ces.2006.12.033

  • Güthenke A., Chatterjee D., Weibel M., Waldbüßer N., Kočí P., Marek M., Kubíček M. Development and application of a model for a NOx storage and reduction catalyst. Chemical Engineering Science 62 (2007), 5357-5363. DOI:10.1016/j.ces.2007.01.049

  • Güthenke A., Chatterjee D., Weibel M., Waldbüßer N., Thinschmidt B., Kočí P., Marek M., Kubíček M. Simulation of NOx storage and reduction catalyst: Model development and application. SAE Technical Paper 2007-01-1117 (2007). DOI:10.4271/2007-01-1117

  • Kočí P., Štěpánek F., Kubíček M., Marek M. Pore-scale modeling of non-isothermal reaction phenomena in digitally reconstructed porous catalyst. Molecular Simulation 33 (2007), 369-377. DOI:10.1080/08927020601156426

  • Kočí P., Schejbal M., Trdlička J., Gregor T., Kubíček M., Marek M. Transient behaviour of catalytic monolith with NOx storage capacity. Catalysis Today 119 (2007), 64-72. DOI:10.1016/j.cattod.2006.08.014

  • Marek M., Grof Z., Kočí P., Kohout M., Kosek J., Štěpánek F. Multiscale modelling of transport, reaction and phase change in heterogeneous media. Journal of Chemical Engineering of Japan 40 (2007), 879-889. DOI:10.1252/jcej.07WE044

  • Starý T., Šolcová O., Schneider P., Marek M. Effective diffusivities and pore-transport characteristics of washcoated ceramic monolith for automotive catalytic converter. Chemical Engineering Science 61 (2006), 5934-5943. DOI:10.1016/j.ces.2006.05.014

  • Marek M., Schejbal M., Kočí P., Nevoral V., Kubíček M., Hadač O., Schreiber I. Oscillations, Period-Doublings, and Chaos in CO Oxidation and Catalytic Mufflers. Chaos 16 (2006), 037107. DOI:10.1063/1.2354429

  • Kočí P., Štěpánek F., Kubíček M., Marek M. Meso-scale modelling of CO oxidation in digitally reconstructed porous Pt/γ-Al2O3 catalyst. Chemical Engineering Science 61 (2006), 3240-3249. DOI:10.1016/j.ces.2005.12.008

  • Kryl D., Kočí P., Kubíček M., Marek M., Maunula T., Härkönen M. Catalytic Converters for Automobile Diesel Engines with Adsorption of Hydrocarbons on Zeolites. Industrial and Engineering Chemistry Research 44 (2005), 9524-9534. DOI:10.1021/ie050249v

  • Kočí P., Nevoral V., Záhrubský M., Kubíček M., Marek M. Nonlinear dynamics of automobile exhaust gas converters: The role of nonstationary kinetics. Chemical Engineering Science 59 (2004), 5597-5605. DOI:10.1016/j.ces.2004.07.115

  • Kočí P., Kubíček M., Marek M. Periodic forcing of three-way catalyst with diffusion in the washcoat. Catalysis Today 98 (2004), 345-355. DOI:10.1016/j.cattod.2004.08.002

  • Kočí P., Kubíček M., Marek M. Modelling of TWC monolith converters with microkinetics and diffusion in the washcoat. Industrial and Engineering Chemistry Research 43 (2004), 4503-4510. DOI:10.1021/ie034137k

  • Kočí P., Kubíček M., Marek M. Multifunctional aspects of three-way catalyst: Effects of complex washcoat composition. Chemical Engineering Research and Design 82 (2004), 284-292. DOI:10.1205/026387604772992882

  • Kočí P., Marek M., Kubíček M., Maunula T., Härkönen M. Modelling of catalytic monolith converters with low- and high-temperature NOx storage compounds and differentiated washcoat. Chemical Engineering Journal 97 (2004), 131-139. DOI:10.1016/S1385-8947(03)00151-7

  • Jirát J., Štěpánek F., Marek M., Kubíček M. Comparsion of design and operation strategies for temperature control during selective catalytic reduction of NOx. Chemical Engineering Technology 24 (2001), 35-40. DOI:10.1002/1521-4125(200101)24:1

  • Jahn R., Šnita D., Kubíček M., Marek M. Evolution of spatiotemporal temperature patterns in monolithic catalytic reactor. Catalysis Today 70 (2001), 393-409. DOI:10.1016/S0920-5861(01)00346-7

  • Jirát J., Kubíček M., Marek M. Adsorber-reactor systems for emission treatment from mobile sources. Chemical Engineering Science 56 (2001), 1597-1604. DOI:10.1016/S0009-2509(00)00387-0

  • Jirát J., Kubíček M., Marek M. A CAPE tool for evaluation of adsorber-reactor systems for treatment of exhausts from mobile sources. Computers and Chemical Engineering 25 (2001), 643-651. DOI:10.1016/S0098-1354(01)00645-7

  • Štěpánek F., Kubíček M., Marek M., Adler P.M. Optimal design and operation of a separating microreactor. Chemical Engineering Science 54 (1999), 1493-1498. DOI:10.1016/S0009-2509(99)00053-6

  • Jirát J., Štěpánek F., Kubíček M., Marek M. Nonstationary operation of a system of catalytic monolithic reactors for selective NOx reduction. Chemical Engineering Science 54 (1999), 2609-2618. DOI:10.1016/S0009-2509(98)00399-6

  • Jirát J., Kubíček M., Marek M. Mathematical modeling of catalytic monolithic reactors with storage of reaction components on the catalyst surface. Catalysis Today 53 (1999), 583-596. DOI:10.1016/S0920-5861(99)00146-7

  • Kubíček M., Pinkas P., Jirát J., Šnita D., Marek M. Modelling of interconnected reactor systems described by nonlinear PDE's. Computers and Chemical Engineering 21 (1997), 757-762. DOI:10.1016/S0098-1354(97)87594-1

  • Jahn R., Šnita D., Kubíček M., Marek M. 3-D modelling of monolith reactors. Catalysis Today 38 (1997), 39. DOI:10.1016/S0920-5861(97)00037-0

  • Pinkas P., Šnita D., Kubíček M., Marek M. Catalytic Honeycomb Reactors with Electrical Heating. Chemical Engineering Science 49 (1995), 5347-5358. DOI:10.1016/0009-2509(94)00301-7

  • Dvořák L., Pinkas P., Marek M. Dynamic behaviour of CO catalytic afterburner with electric heating. Catalysis Today 20 (1994), 449-466. DOI:10.1016/0920-5861(94)80138-X

  • Kapička J., Marek M. Translation to chaos in the oscillating CO oxidation on Pt/γ-Al2O3. Surface Science 222 (1989), 885-889. DOI:10.1016/0167-2584(89)90922-5

Books

  • Kočí P. Global Kinetic Modelling of the NSR Catalysts, in "NOx Trap Catalysts and Technologies: Fundamentals and Industrial Applications", pp. 279-320, L. Lietti and L. Castoldi (eds.), ISBN: 978-1-78262-931-3, The Royal Society of Chemistry, London (2018). DOI:10.1039/9781788013239-00279
    Chapter   -   Complete Book

  • Güthenke A., Chatterjee D., Weibel M., Krutzsch B., Kočí P., Marek M., Nova I., Tronconi E. Current status of modeling lean exhaust gas aftertreatment catalysts, in "Advances in Chemical Engineering vol. 33: Automotive Emission Control", pp. 103-211, G.B. Marin (ed.), ISBN: 978-0-12-373900-1, Elsevier, Amsterdam (2007). DOI:10.1016/S0065-2377(07)33003-2
    Chapter   -   Complete Book

  • Jirát J., Štěpánek F., Kubíček M., Marek M. Operation of reactor-adsorber systems for minimization of exhaust gases emissions, in "Reaction Engineering for Pollution Prevention", pp. 221-235, M. Abraham and R.P. Hesketh (eds.). Elsevier, Amsterdam (2000).

  • Marek M., Müller S.C., Yamaguchi E., Yoshikawa K. (eds.). Dynamism and Regulation in Nonlinear Chemical Systems. Elsevier, Amsterdam (1995).

  • Marek M., Schreiber I. Chaotic Behaviour of Deterministic Dissipative Systems. Academia, Prague (1991), Cambrige University Press, Cambridge (1995).

  • Holodniok M., Klíč A., Kubíček M., Marek M. Methods of Analysis of Nonlinear Dynamical Models. Academia, Prague, in Czech (1986), World Publishing House, Moscow, in Russian (1991).

  • Marek M., Schreiber I. Stochastic Behaviour of Deterministic Systems. Academia, Prague, in Czech (1984).

  • Kubíček M., Marek M. Computational Methods in Bifurcation Theory and Dissipative Structures. Springer Verlag, Heidelberg / New York (1983).

PhD Theses

  • Plachá M. Modeling of transport and reaction in porous catalytic filters using 3D digital reconstruction. PhD Thesis (2023).
    Annotation

  • Březina J. Experimental study of reactions on oxidation and three-way catalysts for automotive exhaust gas aftertreatment. PhD Thesis (2022).
    Annotation

  • Václavík M. Engineering of multi-functional porous catalysts and filters. PhD Thesis (2021).
    Annotation

  • Leskovjan M. Mathematical modeling of combined exhaust gas aftertreatment systems. PhD Thesis (2021).
    Annotation

  • Dudák M. Optimization of a porous catalytic layer structure aided by 3D computer reconstruction. PhD Thesis (2019).
    Annotation

  • Mráček D. Analysis and Modelling of Spatiotemporal Concentration Profiles in NOx Reduction Automotive Catalytic Converters. PhD Thesis (2016).
    Annotation

  • Bártová Š. Selectivity of NOx Reduction In Diesel Exhaust Gas Catalysts Based on Platinum Group Metals. PhD Thesis (2014).
    Summary

  • Novák V. Virtual prototyping of porous catalysts at micro- and nano-scale. PhD Thesis (2013).
    Summary

  • Štěpánek J. Simulation of Automotive Catalysts and Combined Exhaust Gas Aftertreatment Systems. PhD Thesis (2013).
    Summary

  • Plát F. Dynamic Behaviour of NOx Storage Catalysts and Combined Exhaust Gas Aftertreatment Systems. PhD Thesis (2011).
    Annotation

  • Schejbal M. Dynamic Behaviour of Complex Catalytic Systems and Particulate Filters. PhD Thesis (2009).
    Annotation

  • Kočí P. Catalytic Monolith Reactors with Surface Deposition of Gas Components - Applications in Automobile Exhaust Gas Conversion. PhD Thesis (2005).
    Annotation
[urlnadstranka] => [iduzel] => 61167 [canonical_url] => [skupina_www] => Array ( ) [url] => /publications [sablona] => stdClass Object ( [class] => stranka_ikona [html] => [css] => [js] => [autonomni] => 1 ) ) [61166] => stdClass Object ( [nazev] => Research Team [seo_title] => Team [seo_desc] => [autor] => [autor_email] => [perex] => [ikona] => [obrazek] => 0001~~C0gtKVLwzk_OBAA.jpg [ogobrazek] => [pozadi] => [obsah] =>

Head of the group

Team members

Internal collaborators

Team Monolith

 Alumni PhDs

  • Marie Plachá, PhD. - On maternal leave
  • Jan Březina, Ph.D. - Process Engineer and Project Manager in Sultrade, BeneMeat
  • Marek Václavík, PhD. - Real Driving Emissions Specialist at Škoda Auto
  • Martin Leskovjan, PhD. - Researcher at VUTS Liberec
  • Michal Dudák, PhD. - Product Specialist at Anamet, Texture of porous materials
  • David Mráček, PhD. - Research & Development at Honeywell
  • Šárka Bártová, PhD. - Research & Development at Research Centre Řež
  • Vladimír Novák, PhD. - Paul Scherrer Institute, Switzerland
  • František Plát, PhD. - Head of Emission Testing Lab at Škoda Auto
  • Jan Štěpánek, PhD. - Platform Coordinator at Škoda Auto
  • Matyáš Schejbal, PhD. - Emission Reduction Manager at Škoda Auto
  • Robert Jahn, PhD. - Research & Development at Evonik (former Degussa), Germany
  • Jiří Jirát, PhD. - Lecturer at UCT Prague
  • František Štěpánek, PhD. - Professor at UCT Prague
[urlnadstranka] => [iduzel] => 61166 [canonical_url] => [skupina_www] => Array ( ) [url] => /team [sablona] => stdClass Object ( [class] => stranka_obrazek_vertical [html] => [css] => [js] => [autonomni] => 1 ) ) [61164] => stdClass Object ( [nazev] => Projects [seo_title] => Projects [seo_desc] => [autor] => [autor_email] => [obsah] => [urlnadstranka] => [ogobrazek] => [pozadi] => [iduzel] => 61164 [canonical_url] => [skupina_www] => Array ( ) [url] => /projects [sablona] => stdClass Object ( [class] => boxy [html] => [css] => [js] => $(function() { setInterval(function () { $('*[data-countdown]').each(function() { CountDownIt('#'+$(this).attr("id")); }); },1000); setInterval(function () { $('.homebox_slider:not(.stop)').each(function () { slide($(this),true); }); },5000); }); function CountDownIt(selector) { var el=$(selector);foo = new Date; var unixtime = el.attr('data-countdown')*1-parseInt(foo.getTime() / 1000); if(unixtime<0) unixtime=0; var dnu = 1*parseInt(unixtime / (3600*24)); unixtime=unixtime-(dnu*(3600*24)); var hodin = 1*parseInt(unixtime / (3600)); unixtime=unixtime-(hodin*(3600)); var minut = 1*parseInt(unixtime / (60)); unixtime=unixtime-(minut*(60)); if(unixtime<10) {unixtime='0'+unixtime;} if(dnu<10) {unixtime='0'+dnu;} if(hodin<10) {unixtime='0'+hodin;} if(minut<10) {unixtime='0'+minut;} el.html(dnu+':'+hodin+':'+minut+':'+unixtime); } function slide(el,vlevo) { if(el.length<1) return false; var leva=el.find('.content').position().left; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; var cislo=leva/sirka*-1; if(vlevo) { if(cislo+1>pocet) cislo=0; else cislo++; } else { if(cislo==0) cislo=pocet-1; else cislo--; } el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } function slideTo(el,cislo) { if(el.length<1) return false; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; if(cislo<0 || cislo>pocet) return false; el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } [autonomni] => 1 ) ) [61014] => stdClass Object ( [nazev] => Sitemap [seo_title] => Sitemap [seo_desc] => [autor] => [autor_email] => [obsah] =>

Only English part of the website is shown. For Czech sitemap switch language in the menu.

[urlnadstranka] => [obrazek] => [pozadi] => [iduzel] => 61014 [canonical_url] => _clone_ [skupina_www] => Array ( ) [url] => /sitemap-en_clone_53036 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [24134] => stdClass Object ( [obsah] => [iduzel] => 24134 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) ) [iduzel] => 61012 [canonical_url] => _clone_ [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) ) [sablona] => stdClass Object ( [class] => web [html] => [css] => [js] => [autonomni] => 1 ) [api_suffix] => )

DATA


stdClass Object
(
    [nazev] => prof. Ing. Petr Kočí, Ph.D.
    [seo_title] => CV Petr Kočí
    [seo_desc] => 
    [autor] => 
    [autor_email] => 
    [perex] => 
    [ikona] => 
    [obrazek] => 0001~~C0gtKVLwzk_OBAA.jpg
    [ogobrazek] => 
    [pozadi] => 
    [obsah] => 

Education and professional experience

  • 2001: MSc in Chemical Engineering, University of Chemistry and Technology (UCT) Prague
    MSc Thesis "Modelling of non-stationary behaviour of monolithic reactors"
  • 2003,2004: Student fellowship, Imperial College London, UK
  • 2005: PhD in Chemical Engineering, UCT Prague
    PhD Thesis "Catalytic monolith reactors with surface deposition of gas components - Applications in automobile exhaust gas conversion"
  • 2005: Fellow researcher at Daimler AG (Mercedes-Benz), Stuttgart, Germany
    Modelling of exhaust gas aftertreatment systems
  • 2006-2008: Post-doctoral fellowship, UCT Prague
  • 2009-2011: Research associate at UCT Prague
  • 2010: Guest Researcher at Oak Ridge National Laboratory, TN, USA,
    Fuels, Engines and Emissions Research Center
  • 2012-2014: Assistant professor at UCT Prague
  • 2015-2020: Associate professor at UCT Prague
    Habilitation Thesis "From nano-scale to global models of catalytic reactors"
  • 2020-present: Full professor at UCT Prague

Research interests

  • Dynamic behaviour of catalytic reactors and filters for automotive exhaust gas aftertreatment
  • Kinetics of heterogeneous catalytic reactions
  • Multi-scale modeling of reaction and transport processes
  • 3D computer reconstruction of porous structures

Publications

Teaching

  • Chemical reaction engineering
  • Industrial reactors
  • Unit operations in chemical engineering
  • Laboratory of chemical engineering

Industrial co-operations

  • Johnson Matthey - catalytic coatings with controlled reaction-transport properties, catalyst aging kinetics
  • Škoda Auto - automotive emissions and exhaust gas aftertreatment
  • Mercedes-Benz - experiments and software development for catalysts and filters
  • Corning - pore-scale modeling of filter substrates
  • Dinex Ecocat - development of global kinetic models

Awards

  • 2001-2005: Votoček's Fellowship for excellent PhD students
  • 2003: Best young researcher award at 3rd International Symposium on Multifunctional Reactors, University of Bath, UK
  • 2006: Best PhD Thesis at the Faculty of Chemical Engineering, Unipetrol Award
  • 2013: Excellent young academic award, UCT Prague
[submenuno] => [urlnadstranka] => [newurl_domain] => 'monolith.vscht.cz' [newurl_jazyk] => 'en' [newurl_akce] => '/team/koci' [newurl_iduzel] => [newurl_path] => 8549/61003/61004/61012/61166/61198 [newurl_path_link] => Odkaz na newurlCMS [iduzel] => 61198 [platne_od] => 24.04.2023 15:12:00 [zmeneno_cas] => 24.04.2023 15:23:13.304767 [zmeneno_uzivatel_jmeno] => Petr Kočí [canonical_url] => [idvazba] => 72584 [cms_time] => 1714809550 [skupina_www] => Array ( ) [slovnik] => Array ( ) [poduzel] => stdClass Object ( [61172] => stdClass Object ( [nazev] => Contact [barva_pozadi] => cervena [uslideru] => false [text] =>

prof. Ing. Petr Kočí, Ph.D.

b
University of Chemistry and Technology, Prague
Technická 5
166 28 Prague
Czechia

(see map)

e
+420 220 442 027


petr.koci@vscht.cz

[poduzel] => Array ( ) [iduzel] => 61172 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => infobox [html] => [css] => [js] => [autonomni] => 0 ) ) ) [sablona] => stdClass Object ( [class] => stranka_obrazek_vertical [html] => [css] => [js] => [autonomni] => 1 ) [api_suffix] => )

Contact

prof. Ing. Petr Kočí, Ph.D.

b
University of Chemistry and Technology, Prague
Technická 5
166 28 Prague
Czechia

(see map)

e
+420 220 442 027


petr.koci@vscht.cz

×


UCT Prague
Technická 5
166 28 Prague 6 – Dejvice
IČO: 60461373 / VAT: CZ60461373

Czech Post certified digital mail code: sp4j9ch

Copyright: UCT Prague
Information provided by the Department of International Relations and the Department of R&D. Technical support by the Computing Centre.